Una Pregunta de combinatoria

Algoritmos, fórmulas, estadísticas...
Responder
Avatar de Usuario
victrope
11
11
Mensajes: 330
Registrado: Sab 17 Mar, 2018 12:44 am

Una Pregunta de combinatoria

Mensaje por victrope »

¿De cuantas formas posibles se pueden combinar en los 14 signos de la quiniela 4 triples y 4 dobles, (el concurso de pronóstico de sistemistas)?,

Teniendo en cuenta que:
- Un triple solo se puede combinar de una forma,
- Los dobles de tres formas 1X,X2,12 y
- Los simples de tres formas 1,X,2.

Un saludo
Avatar de Usuario
PacoHH
15
15
Mensajes: 20145
Registrado: Lun 20 Oct, 2003 8:03 pm
Ubicación: Almería
Contactar:

Re: Una Pregunta de combinatoria

Mensaje por PacoHH »

Por partes:

Parte 1:

Solo 8 partidos: 4 triples y 4 dobles a "1X", es como poner los 4 triples en 8 partidos porque los otros 4 son los dobles -> combinaciones de 8 elementos tomados de 4 en 4

8! / (4! * 4!) = 70

Se multiplica por 3.... por los 3 posibles dobles..... 70 * 3 = 210

Los otros 6 partidos son fijos pero vale cualquier signo.... Variaciones con repetición de 3 elementos tomados de 6 en 6.... 3^6= 729

O sea que con los 4 triples y 4 dobles en las 8 primeras posiciones son

210 * 729 = ‭153.090‬ posibles formas de combinarlos

Parte 2

Ahora toca combinarlos dentro de los 14 triples, es colocar 8 bolas en 14 agujeros, combinaciones de 14 elementos tomados de 8 en 8

14! / (8! * 6!) = 3.003

153.090 * 3.003 = ‭459.729.270‬

Creo que no me he equivocado, me queda la duda de si hay repeticiones pero creo que no.
parapeto
11
11
Mensajes: 690
Registrado: Mié 12 Oct, 2011 10:09 pm

Re: Una Pregunta de combinatoria

Mensaje por parapeto »

3003*729*70*81 --> 12.412.690.290‬
Avatar de Usuario
victrope
11
11
Mensajes: 330
Registrado: Sab 17 Mar, 2018 12:44 am

Re: Una Pregunta de combinatoria

Mensaje por victrope »

parapeto escribió:3003*729*70*81 --> 12.412.690.290‬
¿Podrías explicar un poco más de donde salen las cifras?

Gracias
parapeto
11
11
Mensajes: 690
Registrado: Mié 12 Oct, 2011 10:09 pm

Re: Una Pregunta de combinatoria

Mensaje por parapeto »

Para poner 6 fijos hacen falta rellenar 6 de 14 huecos --> (14*13*12*11*10*9)/(6*5*4*3*2) = 3003

Cada uno de esos 3003 casos se pueden rellenar de 729 maneras (6 triples).

De los 8 huecos que quedan sin rellenar hay que dedicar 4 a los dobles --> (8*7*6*5)/(4*3*2) --> 70

Hay 81 formas de combinar 3 clases de dobles en esos 4 huecos.

3003*729*70*81
Avatar de Usuario
victrope
11
11
Mensajes: 330
Registrado: Sab 17 Mar, 2018 12:44 am

Re: Una Pregunta de combinatoria

Mensaje por victrope »

parapeto escribió:Para poner 6 fijos hacen falta rellenar 6 de 14 huecos --> (14*13*12*11*10*9)/(6*5*4*3*2) = 3003

Cada uno de esos 3003 casos se pueden rellenar de 729 maneras (6 triples).

De los 8 huecos que quedan sin rellenar hay que dedicar 4 a los dobles --> (8*7*6*5)/(4*3*2) --> 70

Hay 81 formas de combinar 3 clases de dobles en esos 4 huecos.

3003*729*70*81

Gracias, sería entonces si no me equivoco: C14,6 X VR6,3 X C8,4 X VR4,3

Que aplicado a cualquier combinación sería C14,fijos X VRfijos,3 X C(14-Fijos),dobles X VRdobles,3
Avatar de Usuario
victrope
11
11
Mensajes: 330
Registrado: Sab 17 Mar, 2018 12:44 am

Re: Una Pregunta de combinatoria

Mensaje por victrope »

PacoHH escribió:Por partes:

Parte 1:

Solo 8 partidos: 4 triples y 4 dobles a "1X", es como poner los 4 triples en 8 partidos porque los otros 4 son los dobles -> combinaciones de 8 elementos tomados de 4 en 4

8! / (4! * 4!) = 70

Se multiplica por 3.... por los 3 posibles dobles..... 70 * 3 = 210

Los otros 6 partidos son fijos pero vale cualquier signo.... Variaciones con repetición de 3 elementos tomados de 6 en 6.... 3^6= 729

O sea que con los 4 triples y 4 dobles en las 8 primeras posiciones son

210 * 729 = ‭153.090‬ posibles formas de combinarlos

Parte 2

Ahora toca combinarlos dentro de los 14 triples, es colocar 8 bolas en 14 agujeros, combinaciones de 14 elementos tomados de 8 en 8

14! / (8! * 6!) = 3.003

153.090 * 3.003 = ‭459.729.270‬

Creo que no me he equivocado, me queda la duda de si hay repeticiones pero creo que no.
Gracias por la respuesta Paco
Avatar de Usuario
victrope
11
11
Mensajes: 330
Registrado: Sab 17 Mar, 2018 12:44 am

Re: Una Pregunta de combinatoria

Mensaje por victrope »

parapeto escribió:Para poner 6 fijos hacen falta rellenar 6 de 14 huecos --> (14*13*12*11*10*9)/(6*5*4*3*2) = 3003

Cada uno de esos 3003 casos se pueden rellenar de 729 maneras (6 triples).

De los 8 huecos que quedan sin rellenar hay que dedicar 4 a los dobles --> (8*7*6*5)/(4*3*2) --> 70

Hay 81 formas de combinar 3 clases de dobles en esos 4 huecos.

3003*729*70*81
Estaba dándole vueltas y a mi me sale alguna combinación +:

Considerando que los dobles se comportan a efectos de codificación como los fijos con 3 valores posibles por posición, se podrían considerar como elementos similares......

Sacando las combinaciones posibles 14 elementos tomados de 10 en 10.
1001 * VR10,3 = 1001 * 3^10 = 59.108.049

Solo nos restaría multiplicar por las posiciones en que se pueden combinar los 4 triples con un valor único = C14,4 = 1001

59.108.049 * 1001 = 59.167.157.049



(De todas formas he lanzado un pequeño programa para el cálculo, no lo tengo claro :cabezazos: , cuando termine la ejecución, que tardará un poco :haha: , os lo cuento.

Saludos
parapeto
11
11
Mensajes: 690
Registrado: Mié 12 Oct, 2011 10:09 pm

Re: Una Pregunta de combinatoria

Mensaje por parapeto »

Aunque consideres los dobles similares a los fijos realmente no lo son.

Tienes que rellenar 14 huecos con 4 T + 4 D + 6 F

D <> F

Si haces esto que dices:

"Sacando las combinaciones posibles 14 elementos tomados de 10 en 10.
1001 * VR10,3 = 1001 * 3^10 = 59.108.049"


Estás incluyendo casos como 10 fijos, 9 fijos y un doble, etc... hasta 10 dobles.
Avatar de Usuario
victrope
11
11
Mensajes: 330
Registrado: Sab 17 Mar, 2018 12:44 am

Re: Una Pregunta de combinatoria

Mensaje por victrope »

parapeto escribió:Aunque consideres los dobles similares a los fijos realmente no lo son.

Tienes que rellenar 14 huecos con 4 T + 4 D + 6 F

D <> F

Si haces esto que dices:

"Sacando las combinaciones posibles 14 elementos tomados de 10 en 10.
1001 * VR10,3 = 1001 * 3^10 = 59.108.049"


Estás incluyendo casos como 10 fijos, 9 fijos y un doble, etc... hasta 10 dobles.
Tienes toda la razón, me he liado bastante, son diferentes y pedimos que la combinación tenga 4. Tu solución parece la más apropiada. Gracias y un saludo.
Avatar de Usuario
Ogmios
11
11
Mensajes: 432
Registrado: Dom 17 Feb, 2019 7:08 pm

Re: Una Pregunta de combinatoria

Mensaje por Ogmios »

Hola a tod@s.
Coincido con la solución de Parapeto.
Por un lado, hay que calcular todas las agrupaciones posibles de 8 partidos dentro de un grupo de 14 partidos, que son:
C,14,8=3.003 agrupaciones posibles.
Como entre los 8 partidos hay 4 triples y 4 dobles, hay que calcular de cuantas formas distintas se pueden distribuir, y eso son permutaciones con repetición de 8 elementos, entre los cuales 2 son de distinta clase y dentro de cada clase hay 4 elementos comunes. En total hay 8!/(4!*4!)=70 formas distintas de distribuirse.
Por último, los dobles generan 81 posibilidades distintas de combinarse.

3.003*70*81=17.027.010, y ese resultado hay que multiplicarlo por las 729 posibilidades que generan los 6 fijos, que dan como resultado las 12.412.690.290 formas posibles de distribuir 4 triples y 4 dobles entre los 14 partidos.


Saludos.
Última edición por Ogmios el Jue 12 Mar, 2020 11:06 pm, editado 2 veces en total.
"DONDE CAEN LAS PISADAS DEL MAESTRO, LOS OÍDOS DE AQUELLOS PREPARADOS PARA SU ENSEÑANZA SE ABREN DE PAR EN PAR."

EL KYBALION.
Avatar de Usuario
victrope
11
11
Mensajes: 330
Registrado: Sab 17 Mar, 2018 12:44 am

Re: Una Pregunta de combinatoria

Mensaje por victrope »

Ogmios escribió:Hola a tod@s.
Coincido con la solución de Parapeto.
Por un lado, hay que calcular todas las agrupaciones posibles de 8 partidos dentro de un grupo de 14 partidos, que son:
C,14,8=3.003 agrupaciones posibles.
Como entre los 8 partidos hay 4 triples y 4 dobles, hay que calcular de cuantas formas distintas se pueden distribuir, y eso son permutaciones con repetición de 8 elementos, entre los cuales 2 son de distinta clase y dentro de cada clase hay 4 elementos comunes. En total hay 8!/4!*4!=70 formas distintas de distribuirse.
Por último, los dobles generan 81 posibilidades distintas de combinarse.

3.003*70*81=17.027.010, y ese resultado hay que multiplicarlo por las 729 posibilidades que generan los 6 fijos, que dan como resulado las 12.412.690.290 formas posibles de distribuir 4 triples y 4 dobles entre los 14 partidos.


Saluds.
Si, si, correcta la solución de parapeto y la tuya :ok: . La mía no tenía sentido, me había liado por completo. Gracias,
Avatar de Usuario
Ogmios
11
11
Mensajes: 432
Registrado: Dom 17 Feb, 2019 7:08 pm

Re: Una Pregunta de combinatoria

Mensaje por Ogmios »

Hola a tod@s.
Tranquilo, victrope, que con los problemas de combinatoria es muy fácil liarse.

Saludos.
"DONDE CAEN LAS PISADAS DEL MAESTRO, LOS OÍDOS DE AQUELLOS PREPARADOS PARA SU ENSEÑANZA SE ABREN DE PAR EN PAR."

EL KYBALION.
Responder